
Improving the OI in process control using
Java-enhanced integration and access

Tom Lubinski

CEO

SL Corporation

Corte Madera, California

I
n a typical process information system, large
numbers of continually changing data variables

need to be viewed by multiple clients in a large
network. The user of the operator interface (OI)
expects to perform complex interactions with
the graphics displays and to see, with minimal
delay, dynamic information in near real-time. A
control system that can compete successfully
under these conditions must have an architecture
that is compact and scalable.

Displays should be updated by transferring
only the data necessary for a particular display,
minimizing the overhead. When a new display is
requested by the user, the wait for a new screen
should be, at most, a few seconds. The challenge
becomes more difficult if the goal is to make the
system available over a low- or medium-band-
width Internet connection. Three alternative,
Web-based technologies can be used to update
data displays: server pages, ActiveX, and Java™.

Server pages and ActiveX solutions
One common solution is to have a server-

based process respond to requests from Internet
clients for a specific view of some information.
The server process produces an HTML page and
one or more images, which are sent back to the
client. This approach is very demanding on the
server when there are multiple users. It is also
bandwidth intensive, requiring that complete
images be transmitted on a regular basis in order
to keep the screens updated.

A better solution is for the server to only
transfer specifically-requested data across the
Web, and make use of a thin client application to
update a display on the client side. The process
industry embraced the Microsoft ActiveX solu-
tion for this purpose. It was available and
worked well enough, but was limited to the
Microsoft Windows environment. Installation
required attention to details, and there was al-
ways the possibility of resulting errors.

Java solutions
In a number of ways, the Java™ solution is

very similar to ActiveX technology. A Java pro-
gram on the client machine renders the graph-
ics displays, but only data updates need to be
transferred across the network.

Initially, there was reluctance from many
developers to use Java in process applications,
and for valid reasons. The Netscape and IE
Version 3.x browsers provided only limited,
buggy Java 1.0 support. This was a serious lim-
itation to the use of these early versions.

Now, with version 4+ browsers, support for
Java 1.1 is very good, and Sun Microsystems
continues to release newer versions of its JDK

(1.3+). Real-world applications can be provided
in this environment. As a result, a Java thin client
becomes a real alternative to an ActiveX solu-
tion as a means of accessing and viewing large
amounts of dynamic process data. Java has the
distinct advantage that an application written in
Java can be run on almost any platform, but
most importantly, Windows, UNIX, and Mac.

Moreover, the Java language supports an
object-oriented programming style that is much
easier for many programmers to use than C++.
The syntax is easier to follow, and the interface
construct provides a nice way to achieve a sort of
multiple inheritance, something that is too com-
plex in C++ for many casual users. It is just this
suitability of the Java language to supporting ob-
ject-oriented architecture that makes it so valu-
able. The nature of an operator interface is very
much object oriented. Good tools and language
support are necessary to develop, maintain and
enhance large-scale OI applications.

Browser-based Java applets
Any software platform hosting the Java Vir-

tual Machine can execute a Java application. For
local intranet support, a Java application is much
like any other program running on your system.

However, for Internet access the Java sup-
port that is provided within the current crop of
browsers, Netscape and IE, is very good. In fact,
deploying an application within the framework
of a browser as a Java applet has significant ad-
vantages. A browser anywhere on any machine
can access an HTML page at a specific Web ad-
dress and automatically execute a Java applet,
using the Java VM built into the browser. There is
nothing to download to a user’s system.

Applets can be designed to make use of
newer Java features, such as Swing controls, and
Java 2D graphics. However, the user may need

CONTROL SOFTWARE FORUM

Praful Bhayani

Process Control Manager

SL Corporation

Corte Madera, California

Reprinted from the February 2001 edition of CONTROL SOLUTIONS
Copyright 2001 by PennWell Corporation

CONTROL SOFTWARE FORUM

to download a special Java plug-in for that par-
ticular browser, making it seem more like an
ActiveX solution, although more portable.

Performance considerations
Any Java application is going to be slower

than an equivalent native C++ application, sim-
ply because of the interpreted nature of Java im-
plementations. The performance issue has
slowed the acceptance of Java for large-scale
systems, but this is changing rapidly, as Java im-
proves and hardware performance accelerates.

Java will eventually be compiled. There is
no reason why Java cannot be processed just like
C++ to produce compiled code. It is interpreted
now, for convenience—you don’t need to make
a compiler for every machine. However, as more
applications are done in Java, demand will grow
for optimizations that can only be achieved
through compilation.

Pick third-party support built on Java
There are many issues to address when

building an OI for a process application. It makes
sense to use a third-party product that is designed
specifically for that purpose, and uses the latest
technologies that include Web functionality and
Java-based features. For example, a number of
well-designed third party development systems
provide the following basic features:
1. Arun-time system that manages the display of
graphics screens and associated data variables.
2. A graphics editor that allows the construction
of graphics and associated dynamic behaviors.
3. Compatibility with common Web file formats,
such as SVG, XML, etc., along with proprietary
file formats that may be used for optimization.

A number of other features are not so obvi-
ous, but are of significant importance in the cur-
rent Java deployment environments:
4. Scalability achieved using special techniques
such as Java Code Generation. As the power of
a system increases, so do the demands of the ap-
plication. If the system is capable of it, why not
put even more detail into your application. For
example, your competitors will be “pushing the
envelope,” along with you. To succeed, you
must provide a range of optimal solutions. There
is no room for slop.
5. A state-oriented architecture with routines for
handling user interaction. This often involves
the use of a finite state machine architecture and
API support for an active state hierarchy.

Developing for the future
With the maturing of Java, development

tools and libraries are becoming readily avail-
able, making a Java thin client a serious option
for the deployment of a process graphics OI.
When trying to determine what tools or products
to use to help you build your product or service,
or if you are considering developing a system in-
ternally, recognize that building an OI for a
large-scale control system is a complex under-
taking. It is not just the graphics part of the OI.
There are many integration, performance, and
deployment issues. The Internet has dramatical-
ly changed the way the information flows from
suppliers to customers. Supply chains are be-
coming global and increasingly complex. The
flow of raw materials is being accelerated
through globalized supply chains, requiring
more efficient and customizable process control.

This requires real-time information flow,
enterprise-wide integration and visibility. MES

has become the connector between the plant
floor and ERP/SCM (Enterprise Resource Plan-
ning/Supply Chain Management) to provide a
mix of plant graphics and trend analysis that re-
ports how well production units are performing
and the status of customer order fulfillment.

In the Java environment, you can develop
with the future in mind. You can provide for
multiple deployment scenarios by building a
system that functions as both an applet or an ap-
plication, and works with AWT (Abstract Win-
dow Toolkit) or Swing controls. You can also
make use of object-oriented and state-oriented
approaches to application architecture to protect
your investment in the logic behind the applica-
tion by designing modules as classes and state
classes, which can be implemented equivalently
in C++ or in Java. Only then can you future-
proof your OI for Java and beyond.

About the authors
Tom Lubinski, who founded SL Corp. in

1984, is currently the company’s president and
CEO, and has been instrumental in developing
SL’s Graphical Modeling Solutions (SL-GMS)
software. Lubinski attended the California
Institute of Technology (Pasadena).

Praful Bhayani, SL process control manag-
er, manages the technical direction of SL-GMS.

Bhayani, who has 15 years of experience in pro-
cess automation, graduated from Bangalore Uni-
versity in 1984 with a bachelor’s in engineering.

